Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Control Release ; 369: 642-657, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38575072

RESUMO

Glioma is recognized as the most infiltrative and lethal form of central nervous system tumors and is known for its limited response to standard therapeutic interventions, high recurrence rate, and unfavorable prognosis. Recent progress in gene and immunotherapy presents a renewed sense of optimism in the treatment of glioblastoma. However, the barriers to overcome include the blood-brain barrier (BBB) and the blood-brain tumor barrier (BBTB), as well as the suppressive immune microenvironment. Overcoming these barriers remains a significant challenge. Here, we developed a lipid nanoparticle platform incorporating a dual-functional peptide (cholesterol-DP7-ACP-T7-modified DOTAP or DAT-LNP) capable of targeting glioma across the BBB and BBTB for brain tumor immunotherapy. This system was designed to achieve two key functions. First, the system could effectively penetrate the BBB during accumulation within brain tissue following intravenous administration. Second, this system enhances the maturation of dendritic cells, the polarization of M1 macrophages, and the activation of cytotoxic CD8+ T cells. This multifaceted approach effectively mitigates the immunosuppressive tumor microenvironment of glioma and promotes robust antitumor immune responses. Overall, the intravenous administration of the delivery system designed in this study demonstrates significant therapeutic potential for glioma and holds promising applications in the field of cancer immunotherapy.

2.
J Clin Gastroenterol ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38457410

RESUMO

BACKGROUND: Gastric structure recognition systems have become increasingly necessary for the accurate diagnosis of gastric lesions in capsule endoscopy. Deep learning, especially using transformer models, has shown great potential in the recognition of gastrointestinal (GI) images according to self-attention. This study aims to establish an identification model of capsule endoscopy gastric structures to improve the clinical applicability of deep learning to endoscopic image recognition. METHODS: A total of 3343 wireless capsule endoscopy videos collected at Nanfang Hospital between 2011 and 2021 were used for unsupervised pretraining, while 2433 were for training and 118 were for validation. Fifteen upper GI structures were selected for quantifying the examination quality. We also conducted a comparison of the classification performance between the artificial intelligence model and endoscopists by the accuracy, sensitivity, specificity, and positive and negative predictive values. RESULTS: The transformer-based AI model reached a relatively high level of diagnostic accuracy in gastric structure recognition. Regarding the performance of identifying 15 upper GI structures, the AI model achieved a macroaverage accuracy of 99.6% (95% CI: 99.5-99.7), a macroaverage sensitivity of 96.4% (95% CI: 95.3-97.5), and a macroaverage specificity of 99.8% (95% CI: 99.7-99.9) and achieved a high level of interobserver agreement with endoscopists. CONCLUSIONS: The transformer-based AI model can accurately evaluate the gastric structure information of capsule endoscopy with the same performance as that of endoscopists, which will provide tremendous help for doctors in making a diagnosis from a large number of images and improve the efficiency of examination.

3.
Langmuir ; 40(11): 6026-6034, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451161

RESUMO

The photocatalytic transformation of carbon dioxide (CO2) into valuable chemicals is a challenging process that requires effective and selective catalysts. However, most polymer-based photocatalysts with electron donor-acceptor (D-A) structures are synthesized with a fixed D-A ratio by using expensive monomers. Herein, we report a simple strategy to prepare polyarene oxides (PAOs) with quinone structural units via oxidation treatment of polyarene (PA). The resultant PAOs show tunable D-A structures and electronic band positions depending on the degree of oxidation, which can catalyze the photoreduction of CO2 with water under visible light irradiation, generating CO as the sole carbonaceous product without H2 generation. Especially, the PAO with an oxygen content of 17.6% afforded the highest CO production rate of 161.9 µmol g-1 h-1. It is verified that the redox transformation between quinone and phenolic hydroxyl in PAOs achieves CO2 photoreduction coupled with water oxidation. This study provides a facile way to access conjugated polymers with a tunable D-A structure and demonstrates that the resultant PAOs are promising photocatalysts for CO2 reduction.

4.
Cancer Biol Ther ; 25(1): 2323768, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38465861

RESUMO

Double minutes (DMs), extrachromosomal gene fragments found within certain tumors, have been noted to carry onco- and drug resistance genes contributing to tumor pathogenesis and progression. After screening for SUMO-related molecule expression within various tumor sample and cell line databases, we found that SUMO-conjugating enzyme UBC9 has been associated with genome instability and tumor cell DM counts, which was confirmed both in vitro and in vivo. Karyotyping determined DM counts post-UBC9 knockdown or SUMOylation inhibitor 2-D08, while RT-qPCR and Western blot were used to measure DM-carried gene expression in vitro. In vivo, fluorescence in situ hybridization (FISH) identified micronucleus (MN) expulsion. Western blot and immunofluorescence staining were then used to determine DNA damage extent, and a reporter plasmid system was constructed to detect changes in homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. Our research has shown that UBC9 inhibition is able to attenuate DM formation and lower DM-carried gene expression, in turn reducing tumor growth and malignant phenotype, via MN efflux of DMs and lowering NHEJ activity to increase DNA damage. These findings thus reveal a relationship between heightened UBC9 activity, increased DM counts, and tumor progression, providing a potential approach for targeted therapies, via UBC9 inhibition.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Humanos , Núcleo Celular , Hibridização in Situ Fluorescente
5.
J Agric Food Chem ; 72(6): 2963-2976, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305024

RESUMO

Polycystic ovarian syndrome (PCOS) is the major cause of infertility in reproductive women, but no universal drug is feasible. Although puerarin clinically treats cerebrovascular and cardiovascular diseases, its curative effect on PCOS remains elusive. The present study discovered that administration of puerarin restored estrous cycle of PCOS mice and diminished the number of cystic follicles with the concomitant recovery for circulating testosterone, LH and FSH levels, and LH/FSH ratio, indicating the therapeutic role of puerarin in PCOS. KEGG analysis of differential genes between PCOS and control revealed the enrichment in MAPK and calcium signaling pathway. Application of puerarin restricted the phosphorylation of ERK1/2 and JNK, whose activation neutralized the improvement of puerarin on the secretory function and apoptosis of ovarian granulosa cells (GCs). Meanwhile, puerarin alleviated the accumulation of cytosolic Ca2+ through restricting the opening of Ryr and Itpr channels, but this effectiveness was counteracted by the activatory ERK1/2 and JNK. Attenuation of cytosolic Ca2+ counteracted the antagonistic effects of ERK1/2 and JNK activation on puerarin's role in rescuing the calcineurin and Nfatc. Further analysis manifested that Mcu had been authenticated as a direct downstream target of Nfatc to mediate the amelioration of puerarin on mitochondrial Ca2+ uptake. Moreover, puerarin prevented the disorder of ATP content, mitochondrial membrane potential, and mitochondrial permeability transition pore opening through maintaining mitochondrial Ca2+ homeostasis. Collectively, puerarin might ameliorate the symptoms of PCOS mice through preventing mitochondrial dysfunction that is dependent on the maintenance of intracellular Ca2+ homeostasis after inactivation of ERK1/2 and JNK.


Assuntos
Isoflavonas , Doenças Mitocondriais , Síndrome do Ovário Policístico , Feminino , Humanos , Camundongos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Cálcio/metabolismo , Células da Granulosa , Hormônio Foliculoestimulante/metabolismo , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/uso terapêutico , Doenças Mitocondriais/metabolismo
6.
Adv Sci (Weinh) ; 11(14): e2308345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311577

RESUMO

Peptides with suitable aggregation behavior and electrical properties are potential siRNA delivery vectors. However, identifying suitable peptides with ideal delivery and safety features is difficult owing to the variations in amino acid sequences. Here, a holistic program based on computer modeling and single-cell RNA sequencing (scRNA-seq) is used to identify ideal siRNA delivery peptides. Stage one of this program consists of a sequential screening process for candidates with ideal assembly and delivery ability; stage two is a cell subtype-level analysis program that screens for high in vivo tissue safety. The leading candidate peptide selected from a library containing 12 amino acids showed strong lung-targeted siRNA delivery capacity after hydrophobic modification. Systemic administration of these compounds caused the least damage to liver and lung tissues and has little impact on macrophage and neutrophil numbers. By loading STAT3 siRNA, strong anticancer effects are achieved in multiple models, including patient-derived xenografts (PDX). This screening procedure may facilitate the development of peptide-based RNA interference (RNAi) therapeutics.


Assuntos
Pulmão , Peptídeos , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Peptídeos/metabolismo , Interferência de RNA , Pulmão/metabolismo , Computadores
7.
PLoS One ; 18(10): e0292673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883426

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) occurs due to pathological aortal dilation, and both individuals with normal tricuspid aortic valves (TAV) or abnormal bicuspid aortic valves (BAV), the latter being a congenital condition, are at risk. However, some differences are present between TAA/BAV and TAA/TAV with respect to their pathophysiological processes and molecular mechanisms, but their exact nature is still mostly unknown. Therefore, it is necessary to elucidate TAA developmental differences among BAV vs. TAV patients. METHODS: Publically-available gene expression datasets, aortic tissue derived from TAA/BAV and TAA/TAV individuals, were analyzed by weighted gene co-expression network analysis (WGCNA) to identify gene modules associated with those conditions. Gene Ontology (GO) enrichment analysis was performed on those modules to identify the enriched genes within those modules, which were verified by Gene Set Variation Analysis (GSVA) on a dataset derived from aortic smooth muscle cell gene expression between TAA/TAV and TAV/BAV patients. Immune cell infiltration patterns were then analyzed by CIBERSORT, and a protein-protein interaction (PPI) network was constructed based on WGCNA and enrichment analysis results to identify hub genes, followed by validation via stepwise regression analysis. Three signatures most strongly associated with TAA/TAV were confirmed by receiver operating characteristic (ROC) and decision curve analyses (DCA) between prior-established training and testing gene sets. RESULTS: WGCNA delineated 2 gene modules being associated with TAA/TAV vs. TAA/BAV; both were enriched for immune-associated genes, such as those relating to immune responses, etc., under enrichment analysis. TAA/TAV and TAA/BAV tissues also had differing infiltrating immune cell proportions, particularly with respect to dendritic, mast and CD4 memory T cells. Identified three signatures, CD86, integrin beta 2 (ITGB2) and alpha M (ITGAM), as yielding the strongest associations with TAA/TAV onset, which was verified by areas under the curve (AUC) at levels approximating 0.8 or above under ROC analysis, indicating their predictive value for TAA/TAV onset. However, we did not examine possible confounding variables, so there are many alternative explanations for this association. CONCLUSIONS: TAA/TAV pathogenesis was found to be more associated with immune-related gene expression compared to TAA/BAV, and the identification of three strongly-associated genes could facilitate their usage as future biomarkers for diagnosing the likelihood of TAA/TAV onset vs. TAA/BAV, as well as for developing future treatments.


Assuntos
Aneurisma da Aorta Torácica , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Humanos , Valva Tricúspide , Doenças das Valvas Cardíacas/complicações , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/complicações , Valva Aórtica/patologia
8.
Opt Express ; 31(17): 28541-28548, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710905

RESUMO

Developing durable antireflection (AR) coatings with sapphire-like hardness and high transparency faces a significant challenge. Conventionally, achieving these requirements involves depositing thick, high-hardness nitride films. Here, we proposed an alternative approach that combines nanolaminate materials with optical design, overcoming the brittleness of thick nitride films. We selected Ta2O5/Si3N4 nanolaminates with similar refractive indices, improving tribological and optical performance through a unique optomechanical method. Our proposed AR coating exhibited a low reflectance of 0.8% (420-780 nm) and remarkable hardness of 22.8 GPa, and demonstrated the ability to withstand abrasion from steel wool up to 3,000 times on a glass substrate. This work successfully achieves a balance between hardness and toughness, opening new avenues for the development of highly durable coatings.

9.
Front Neurosci ; 17: 1247227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732308

RESUMO

Introduction: Lobular giant motion detector (LGMD) neurons, renowned for their distinctive response to looming stimuli, inspire the development of visual neural network models for collision prediction. However, the existing LGMD-based models could not yet incorporate the invaluable feature of depth distance and still suffer from the following two primary drawbacks. Firstly, they struggle to effectively distinguish the three fundamental motion patterns of approaching, receding, and translating, in contrast to the natural abilities of LGMD neurons. Secondly, due to their reliance on a general determination process employing an activation function and fixed threshold for output, these models exhibit dramatic fluctuations in prediction effectiveness across different scenarios. Methods: To address these issues, we propose a novel LGMD-based model with a binocular structure (Bi-LGMD). The depth distance of the moving object is extracted by calculating the binocular disparity facilitating a clear differentiation of the motion patterns, after obtaining the moving object's contour through the basic components of the LGMD network. In addition, we introduce a self-adaptive warning depth-distance, enhancing the model's robustness in various motion scenarios. Results: The effectiveness of the proposed model is verified using computer-simulated and real-world videos. Discussion: Furthermore, the experimental results demonstrate that the proposed model is robust to contrast and noise.

10.
Adv Sci (Weinh) ; 10(31): e2207697, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37740439

RESUMO

In situ vaccination is a desirable strategy for cancer immunotherapy due to its convenience and capacity to target tumor antigens. Here, an in situ nanovaccine based on a cationic peptide with cholesterol-modified, DP7-C, for cancer immunotherapy is rationally designed, and developed a cancer nanovaccine that is easy to preparate. The nanovaccine includes cocktail small interfering RNAs (siRNAs) and immunologic adjuvant CpG ODNs, has synergistic effect in the cancer treatment. This nanovaccine can induce tumor cell death, promote antigen presentation and relieve immune suppression in the tumor microenvironment (TME). Moreover, this nanovaccine is administered to CT26 (hot) and B16F10 (cold) tumor model mice, in which it targeted the primary tumors and induced systemic antitumor immunity to inhibit metastasis. It is validated that the nanovaccine can convert cold tumors into hot tumors. Furthermore, the nanovaccine increased the immune response to anti-PD-1 therapy by modulating the TME in both CT26- and B16F10-tumor-bearing mice. The siRNA cocktail/CpG ODN/self-assembling peptide nanovaccine is a simple and universal tool that can effectively generate specific tumor cell antigens and can be combined with immuno-oncology agents to enhance antitumor immune activity. The versatile methodology provides an alternative approach for developing cancer nanovaccines.


Assuntos
Imunoterapia , Neoplasias , Camundongos , Animais , Imunoterapia/métodos , Neoplasias/terapia , Antígenos de Neoplasias , Adjuvantes Imunológicos , Peptídeos , Microambiente Tumoral
11.
Adv Healthc Mater ; 12(30): e2301224, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37657086

RESUMO

Severe burns threaten patient lives due to pain, inflammation, bacterial infection, and scarring. Most burn dressings that are commonly used perform a single function and are not well suited for the management of deep burns. Therefore, a multifunctional antimicrobial peptide- and stem cell-loaded macroporous hydrogel that can fight bacterial infection and regulate wound healing progression by temporally regulating cytokine production by internal stem cells is developed. The macroporous skeletal hydrogel is manufactured via the cryogenic gelation of hyaluronic acid (cryogel). Based on the oxidative polymerization reaction of dopamine, the antimicrobial peptide DP7 is immobilized on the surface of the cryogel (DA7CG). Placental mesenchymal stem cells (PMSCs) are then packaged inside the macroporous hydrogel (DA7CG@C). According to the results of in vitro and in vivo experiments, during the inflammatory phase, DP7 inhibits infection and modulates inflammation; during the proliferative phase, DA7CG@C accelerates the regeneration of skin, blood vessels, and hair follicles via internal stem cells; and during the remodeling phase, DA7CG@C contributes to extracellular matrix remodeling due to the ability of DP7 to regulate the paracrine secretion of PMSCs, synergistically promoting scar-free healing. DA7CG@C can participate in all phases of wound healing; therefore, it is a promising dressing for burn treatment.


Assuntos
Infecções Bacterianas , Queimaduras , Infecção dos Ferimentos , Gravidez , Feminino , Humanos , Criogéis , Placenta , Cicatrização/fisiologia , Queimaduras/tratamento farmacológico , Bandagens , Cicatriz , Inflamação , Peptídeos Antimicrobianos
12.
Front Oncol ; 13: 1218056, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601681

RESUMO

Objectives: This study aimed to identify colorectal cancer (CRC)-associated phylogenetic and functional bacterial features by a large-scale metagenomic sequencing and develop a binomial classifier to accurately distinguish between CRC patients and healthy individuals. Methods: We conducted shotgun metagenomic analyses of fecal samples from a ZhongShanMed discovery cohort of 121 CRC and 52 controls and SouthernMed validation cohort of 67 CRC and 44 controls. Taxonomic profiling and quantification were performed by direct sequence alignment against genome taxonomy database (GTDB). High-quality reads were also aligned to IGC datasets to obtain functional profiles defined by Kyoto Encyclopedia of Genes and Genomes (KEGG). A least absolute shrinkage and selection operator (LASSO) classifier was constructed to quantify risk scores of probability of disease and to discriminate CRC from normal for discovery, validation, Fudan, GloriousMed, and HongKong cohorts. Results: A diverse spectrum of bacterial and fungi species were found to be either enriched (368) or reduced (113) in CRC patients (q<0.05). Similarly, metabolic functions associated with biosynthesis and metabolism of amino acids and fatty acids were significantly altered (q<0.05). The LASSO regression analysis of significant changes in the abundance of microbial species in CRC achieved areas under the receiver operating characteristic curve (AUROCs) of 0.94 and 0.91 in the ZhongShanMed and SouthernMed cohorts, respectively. A further analysis of Fudan, GloriousMed, and HK cohorts using the same classification model also demonstrated AUROC of 0.80, 0.78, and 0.91, respectively. Moreover, major CRC-associated bacterial biomarkers identified in this study were found to be coherently enriched or depleted across 10 metagenomic sequencing studies of gut microbiota. Conclusion: A coherent signature of CRC-associated bacterial biomarkers modeled on LASSO binomial classifier maybe used accurately for early detection of CRC.

13.
J Immunol ; 211(6): 932-943, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556117

RESUMO

Neoantigen vaccines have achieved good therapeutic effects in animal experiments and early clinical trials on certain malignant tumors. However, their overall objective effectiveness in clinical trials still needs to be improved. Low-efficiency dendritic cell (DC) migration (<5%) to lymph nodes is one of the factors that limits vaccine effectiveness. For neoantigen vaccines, improving the homing efficiency of DCs is expected to further improve the immunotherapeutic effect. In this study, we used α-d-glucose-1,6-biphosphate (α-d-Glu), a metabolite that successfully enhanced C57BL/6J mouse bone marrow-derived DC homing induced by neoantigen peptide, mRNA, and DC vaccines during the administration process and improved the antitumor effects in the mouse C57BL/6J model with a neoantigen vaccine. We clarified that α-d-Glu activated MAPK8IP1 by inhibiting the expression of microRNA-10a-5p, thereby activating the MAPK signaling pathway to promote DC homing. Excitingly, the efficiency of α-d-Glu in promoting DC migration is not weaker than that of PGE2, which is the gold standard used to promote DC migration in clinical trials of DC vaccines. Thus, this study lays the foundation for further enhancing the objective clinical response rate of neoantigen vaccines and overcoming the limitation of an insufficient clinical response rate for neoantigen vaccines caused by low DC homing efficiency.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Neoplasias/metabolismo , Células Dendríticas
14.
Biol Reprod ; 109(3): 299-308, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37334936

RESUMO

Melatonin is important for oocyte maturation, fertilization, early embryonic development, and embryo implantation, but less knowledge is available regarding its role in decidualization. The present study found that melatonin did not alter the proliferation of human endometrial stromal cells (ESCs), as well as cell cycle progress, but suppressed stromal differentiation after binding to the melatonin receptor 1B (MTNR1B), which was visualized in decidualizing ESCs. Further analysis evidenced that application of melatonin resulted in the diminishment for NOTCH1 and RBPJ expression. Supplementation of recombinant NOTCH1 protein (rNOTCH1) counteracted the impairment of stromal differentiation conferred by melatonin, while the addition of the NOTCH signaling pathway inhibitor DAPT aggravated the differentiation progress. Meanwhile, melatonin might restrain the expression and transcriptional activity of nuclear factor erythroid 2-related factor 2 (NRF2), whose blockage accelerated the fault of stromal differentiation under the context of melatonin, but this restraint was subsequently ameliorated by rNOTCH1. Forkhead box O 1 (FOXO1) was identified as a downstream target of melatonin in decidualization. Repression of NRF2 antagonized the retrieval of rNOTCH1 due to aberrant FOXO1 expression elicited by melatonin. Moreover, melatonin brought about the occurrence of oxidative stress accompanied by an obvious accumulation of intracellular reactive oxygen species and a significant reduction in glutathione (GSH) content, as well as enzymatic activities of glutathione peroxidase and glutathione reductase, whereas supplementation of rNOTCH1 improved the above-mentioned effects. Nevertheless, this improvement was disrupted by the blockage of NRF2 and FOXO1. Furthermore, addition of GSH rescued the defect of stromal differentiation by melatonin. Collectively, melatonin might impair endometrial decidualization by restraining the differentiation of ESCs dependent on NOTCH1-NRF2-FOXO1-GSH pathway after binding to the MTNR1B receptor.


Assuntos
Decídua , Melatonina , Feminino , Humanos , Gravidez , Decídua/metabolismo , Endométrio/metabolismo , Proteína Forkhead Box O1/metabolismo , Glutationa/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Células Estromais/metabolismo
15.
Front Neurorobot ; 17: 1149675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152416

RESUMO

In this paper, we propose a directionally selective fractional-order lobular giant motion detector (LGMD) visual neural network. Unlike most collision-sensing network models based on LGMDs, our model can not only sense collision threats but also obtain the motion direction of the collision object. Firstly, this paper simulates the membrane potential response of neurons using the fractional-order differential operator to generate reliable collision response spikes. Then, a new correlation mechanism is proposed to obtain the motion direction of objects. Specifically, this paper performs correlation operation on the signals extracted from two pixels, utilizing the temporal delay of the signals to obtain their position relationship. In this way, the response characteristics of direction-selective neurons can be characterized. Finally, ON/OFF visual channels are introduced to encode increases and decreases in brightness, respectively, thereby modeling the bipolar response of special neurons. Extensive experimental results show that the proposed visual neural system conforms to the response characteristics of biological LGMD and direction-selective neurons, and that the performance of the system is stable and reliable.

16.
Adv Sci (Weinh) ; 10(15): e2300116, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36950751

RESUMO

The clinical efficacy of personalized cancer vaccines still needs to be improved due to their insufficient immune effect. The development of innovative adjuvants and lymph node-targeted delivery systems is the key to improving the clinical efficacy of personalized vaccines. However, there is still a lack of an adjuvant delivery system that is simple in preparation and capable of mass production and integrates adjuvant and lymph node targeted delivery functions. Here, this work reports that a simple dendrimer polypeptide (KK2DP7) nanoparticle enhances the immune efficacy of an OVA/neoantigen-based vaccine. Due to its multiple functions as a delivery vehicle, immune adjuvant, and facilitator of dendritic cell migration, KK2DP7 efficiently increases the efficiency of antigen uptake and cross-presentation by antigen-presenting cells (APCs) and delivers antigens to lymph nodes via APCs. Strikingly, the antitumor effect of KK2DP7/OVA is superior to that of commonly used adjuvants such as poly(I:C), CpG, and aluminum adjuvant combined with OVA. Furthermore, KK2DP7/OVA combined with anti-PD-1 antibody is able to prevent tumor recurrence in a postoperative recurrent tumor model. Thus, KK2DP7-based cancer vaccines alone or in combination with immune checkpoint blockade therapies to treat tumors or postoperative tumor recurrence are a powerful strategy to enhance antitumor immunity.


Assuntos
Vacinas Anticâncer , Dendrímeros , Humanos , Recidiva Local de Neoplasia , Adjuvantes Imunológicos , Imunoterapia , Antígenos , Peptídeos , Linfonodos
17.
Asian J Androl ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629154

RESUMO

To evaluate and compare the outcomes and complications of three different surgical techniques for treating primary proximal hypospadias with ventral curvature (VC) ≥30°, we retrospectively reviewed the medical records of patients who underwent primary repair of proximal hypospadias with VC ≥30° after degloving at Beijing Children's Hospital Affiliated to Capital Medical University (Beijing, China) from January 2019 to January 2021. A total of 152 patients were divided into three groups: transverse preputial island flap (TPIF) combined with Duplay, modified Koyanagi, and staged TPIF, which were performed on 55, 16, and 81 patients, respectively. A total of 39 (25.7%) patients had complications. Complications rates were similar for the TPIF combined with the Duplay group (40.0%) and modified Koyanagi group (50.0%) but lower for the staged TPIF group (11.1%; P < 0.01). The incidence of urethrocutaneous fistulas was significantly higher in TPIF combined with Duplay group (21.8%) compared to staged TPIF group (4.9%; P = 0.01). In univariate analysis, the length of the urethral defect was the single factor that could predict complications; the cutoff was 4.55 cm. More patients in the long urethral defect group than in the short one had complications (34.1% vs 15.7%, P = 0.01). These results indicate that staged TPIF produced a better outcome, whereas more patients in the TPIF combined with Duplay group presented with two or more complications.

19.
Acta Biomater ; 155: 521-537, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384220

RESUMO

The blood-brain barrier (BBB) has a key role in preventing drugs from entering the brain. Non-invasive intranasal drug delivery routes that bypass the BBB are increasing in popularity because of their ability to shorten the journey and reduce the loss of genetic drugs such as siRNA in transit. However, the complex synthesis and quality control process of most nose-to-brain delivery carriers and the limited mass production are the main obstacles to their clinical application. Here, we constructed a siRNA delivery system with simple synthesis and quality control methods using cholesterol-modified T7 (T7-C), in which T7 can bind to the transferrin receptor (TfR) expressed on glioma cells to target gliomas. In our results, T7-C had dual functions as a glioma-targeting carrier and immune adjuvant. As a targeted delivery carrier, T7-C intranasally delivered siRNA into the mouse brain through the olfactory bulb pathway and was taken up by glioma cells by the caveolin- and transferrin-dependent pathway. As an immune adjuvant, T7-C could promote DC maturation and combined with slit2 siRNA could promote polarization of M2 subtype macrophages to M1 subtype macrophages and then increase the proportion of effector T cells to remodel the tumor environment. In conclusion, T7-C with glioma targeting as a delivery system of slit2 siRNA showed a good therapeutic effect in the treatment of glioma after intranasal administration and had potential application prospects. STATEMENT OF SIGNIFICANCE: In contrast to the existing literature that uses complex materials to deliver drugs across the blood-brain barrier (BBB) in an invasive manner for glioma treatment, we developed a simple, self-assembling siRNA delivery system (T7-C) based on brain tumor-targeted T7 peptide to treat glioma by intranasal administration. T7-C/siRNA could reach the tumor site through the olfactory bulb route and adjust the "cold" tumor microenvironment to the "hot" tumor microenvironment and non-invasive intranasal delivery route could shorten the journey and reduce the loss of genetic drugs. Therefore, our design has good application prospects and is expected to serve as a general strategy for intranasal drug delivery in the treatment of brain tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Nanopartículas , Animais , Camundongos , RNA Interferente Pequeno/metabolismo , Administração Intranasal , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Glioma/tratamento farmacológico , Glioma/metabolismo , Peptídeos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/patologia , Imunoterapia , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Am J Gastroenterol ; 117(12): 1982-1989, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455222

RESUMO

INTRODUCTION: Although recent guidelines recommend endoscopic resection of rectal neuroendocrine tumors (NET) ≤10 mm, there is no consensus on which endoscopic modality should be performed. We aimed to compare the safety and efficacy of modified cap-assisted endoscopic mucosal resection (mEMR-C) and endoscopic submucosal dissection (ESD) methods for the treatment of rectal NET ≤10 mm. METHODS: A randomized noninferiority trial comparing mEMR-C and ESD was conducted. The primary outcome was the histological complete resection rate; the secondary outcomes included en bloc resection rate, operation time, complications, and so on. Subgroup analyses and follow-up were also performed. RESULTS: Ninety patients were enrolled, and 79 patients with pathologically confirmed rectal NET were finally analyzed, including 38 cases of mEMR-C and 41 cases of ESD. Histological complete resection rate was 97.4% in the mEMR-C group and 92.7% in the ESD group. The noninferiority of mEMR-C compared with that of ESD was confirmed because the absolute difference was 4.7% (2-sided 90% confidence interval, -3.3% to 12.2%; P = 0.616). En bloc resection and successful removal of rectal NET were achieved in all patients. Advantages of mEMR-C over ESD included shorter operation time (8.89 ± 4.58 vs 24.8 ± 9.14 minutes, P < 0.05) and lower hospitalization cost ($2,233.76 ± $717.70 vs $2,987.27 ± $871.81, P < 0.05). Postoperative complications were recorded in 4 patients who received mEMR-C and 2 patients in the ESD group (11.5% vs 4.9%, P = 0.509), which were all well managed using endoscopy. Similar findings were observed when subgroup analysis was performed. DISCUSSION: mEMR-C is noninferior to ESD with a similar complete resection rate. In addition, mEMR-C had shorter procedure duration time and lower hospitalization costs. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03982264.


Assuntos
Ressecção Endoscópica de Mucosa , Tumores Neuroendócrinos , Neoplasias Retais , Humanos , Tumores Neuroendócrinos/cirurgia , Neoplasias Retais/cirurgia , Duração da Cirurgia , Complicações Pós-Operatórias/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...